

European Commission FP7 Grant Agreement No: 609837

Key contributions of STAGE-STE international coordination

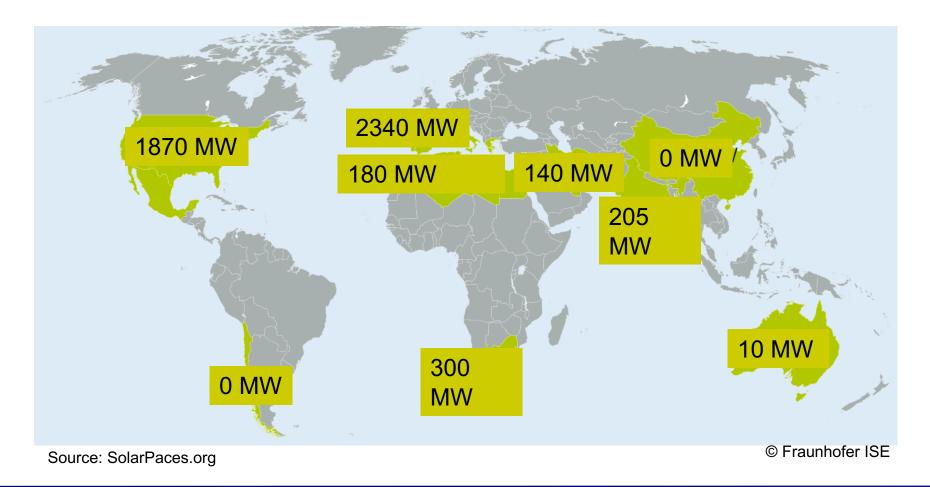
Latest joint efforts between Research and Industry for strengthening European CSP *leadership* (STAGE-STE Workshop) **European Economic and Social Committee** Brussels, January 23rd, 2018

Prof. Dr. Werner Platzer Fraunhofer Institute for Solar Energy Systems werner.platzer@ise.fraunhofer.de

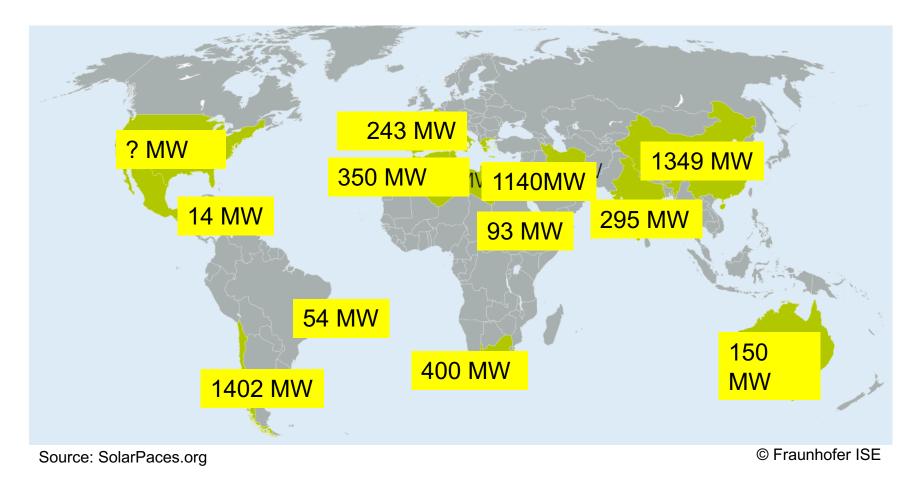
EERA

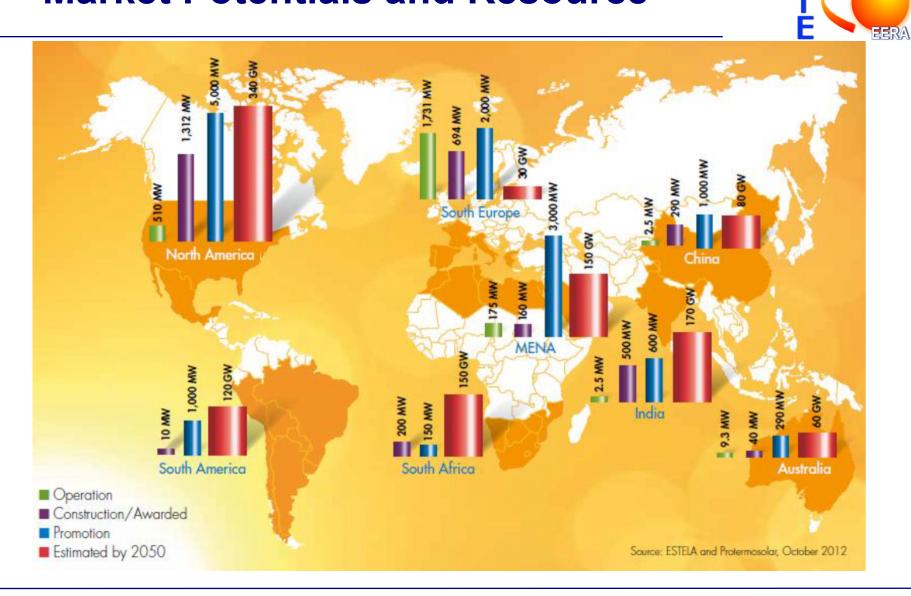
Comité économique et social européen European Economic and Social Committee

International Cooperation


STAGE-STE provided a basis for worldwide cooperation

Worldwide CSP Development


>5 GW in operation, >2 GW in construction, >3 GW in development


Worldwide CSP Development

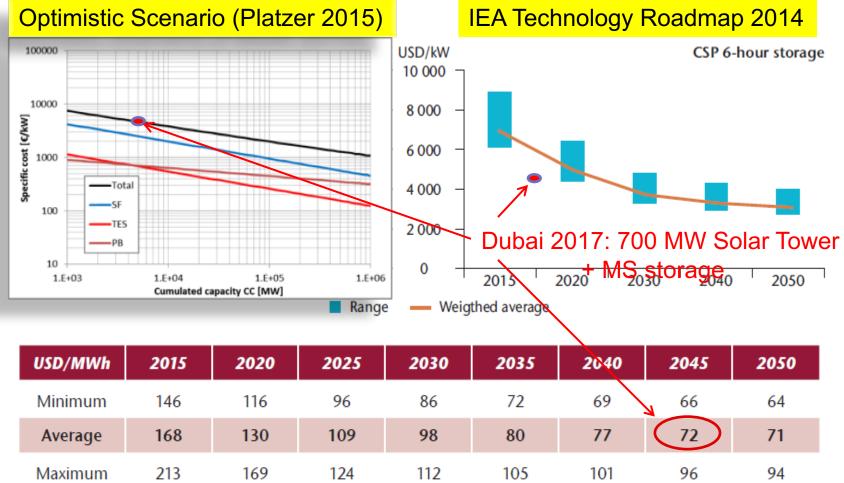
>5 GW in operation, >3 GW in construction, >2 GW in development

Market Potentials and Resource

STAGE-STE Final Workshop. Brussels, 23rd January, 2018

STAGE

Cost Drivers


<u>Technology</u>

Solar field larger aperture and concentration factor improved optics and tracking **Optical concentrators** advanced manufacturing wireless and better control O&M procedures (cleaning) Thermal storage direct storage and higher temperatures adapted storage and construction materials charging and decharging process System Higher efficiencies and new designs **Project development** Reduction of 25% standardization and reduction of risks Financing Sustainable financing risk perception, guarantees, long term PPA

www.stage-ste.eu

Cost Development

Note: All LCOE calculations in this table are based on 8% real discount rates as in ETP 2014 (IEA, 2014b).

STAGE-STE Final Workshop. Brussels, 23rd January, 2018

Country View South Africa

Paving the way

Regulated market NERSA

Possibility for IPP to generate and sell to ESKOM

Clear strategy to introduce RE in Int. Resource Plan

Renewable Energy Independent Power Producer Procurement Programme (REIPPPP) in 2011

Bid windows:

Capacity assignments for different RE (PV, Wind, CSP, Bio, Hydro, Landfill)

Strong learning effects lead to decreasing price BW1 -> BW4 decrease of 67% (RE), 50% (CSP)

Policy risks

Nuclear risk due to untransparent government decision

REIPPPP estimated⁴ price trends Energy weighted average (R/kWh) N8 -19% -39% 2.52 1.66 1.34 0.91 0.82 0.67 BW 1 BW 2 BW 3 BW 4 Medupil Kusile MedupiE Note: REIPPPP prices expressed in April 2016 terms Capacity breakdown (procured) Capacity (MW) BW 2S2 - 50MW Other ⁵ BW 1S2 - 49MW 173MW BW 4 - 2 205MW Wind onshore **IPP** projects 3 357MW BW 3.5 - 200MW BW 3 - 1 452MW Solar CSP 600MW Megawatts BW 2 - 1 040MW Solar PV 2 292MW BW 1 - 1 425MW Per Per

window

(MW)

www.stage-ste.eu

technology

(MW)

Country View South Africa

South Africa has a pipeline of CSP projects

Four bidding processes -> 50% decrease in cost due to learning effects

600 MW CSP since REIPPP 2011 - and 450 MW more expected -> 65% cost decrease

In Operati	on				
Khi Solar One	Upington	Central receiver	50 MW	Abengoa Solar	
	Water/Direct steam	Steam Rankine	Dry cooling	2.0h Saturated steam	
KaXu Solar One	Pofadder	Parabolic trough	100 MW	Abengoa Solar	
	Thermal oil	Steam Rankine	Dry cooling	2.5h Molten salt, 2-tank indirect	
Bokpoort	Groblershoop	Parabolic trough	50 MW	Acwa Power	
	Dowtherm A	Steam Rankine	Wet cooling	9.3h Molten salt, 2-tank indirect	
Under construction					
Xina Solar One	Pofadder	Parabolic trough	100 MW	Abengoa Solar	
	Thermal oil	Steam Rankine	Unknown	5h Molten salt, 2-tank indirect	
Kathu Solar park	Kathu	Parabolic trough	100 MW	Engie	
	Thermal oil	Steam Rankine	Unknown	4.5h Molten salt, 2-tank indirect	
llanga 1	Groblershoop	Parabolic trough	100 MW	Emvelo and Cobra	
	Upington	Steam Rankine	Unknown	4.5h Molten salt, 2-tank indirect	

Country View: Morocco

Government policy

- Objective of raising the RE share to 42 % of installed electric power by 2020 and 52 % by 2030
- Dedicated auctions for CSP and PV

Drivers for RE

- Substitution of imported energy
- Local value generation
- Demand growth

Renewable Energy projects	Installed capacity	Per KWH price in electricity purchase contract	Developer
Taza wind park			EDF/MITSUI
Tarfaya wind park	301 MW	0,72 Dh (0,07 US\$ / KWh)	Nareva-Engie
ntegrated 850 MW vind project		0,31 Dh (0,03 US\$ / KWh)	Nareva-Siemens Enel Green Power
Noor O I csp 160 MW		1,5 Dh (0,15 US\$ / KWh)	Acwa Power
Noor O II csp 200 MW		1,4 Dh (0,14 US\$ / KWh)	Acwa Power
Noor O III csp	150 MW	1,4 Dh (0,14 US\$ / KWh)	Acwa Power
Site/power plant	Power in MW	Technology	Commissioning date
Ouarzazate	Total: 580		
NOORo I	160	CSP	2015
NOORo II	200	CSP	2017/18
NOORo III	150	CSP (solar tower)	2017/18
NOORo IV	70	PV	2018
Midelt	up to 600	CSP / PV**	by 2019
T-+-			
Tata	up to 600	CSP / PV**	by 2019
Ain Béni Mathar	up to 600 420	CSP / PV** CSP / gas*	by 2019 by 2020
	•	,	,
Ain Béni Mathar	420	CSP / gas*	by 2020

Country View Chile

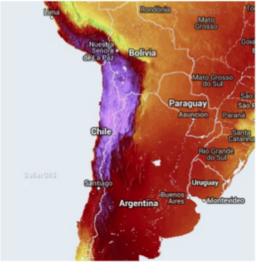
Chile is a perfect country for CSP technology

DNI resource is the best in the world > 3500 kWh/m2a Chile has no substantial conventional energy resources

Liberalized market:

Independent Power Producers may sell to public and private sector

Customers in private sector look for short term contracts


Energy auctions 2016 and 2017 for 2021+ resulted in extremely low bids (PV down to 21.5 USD/MWh)

Project pipeline:

Atacama 1 Solar Tower project of Abengoa is delayed

Solar Reserve did not win a PPA in spite of world record low bid of <50 USD/MWh!

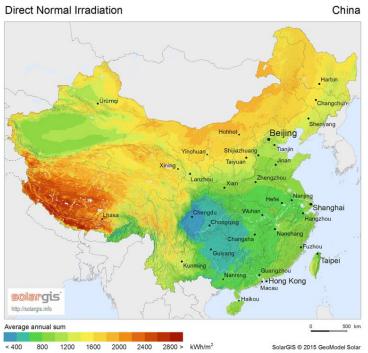
No support mechanism for technology or storage results in development w/o strategy

Country View China

After PV boom China wants to be world leader in CSP technology

DNI resource in China not perfect in preferred area Industry stimulation program with 1 GW CSP

Diversity of Technology:


Parabolic Trough, Linear Fresnel, Solar Tower

Different Heat Transfer Media

Storage capacity highly valued:

20 Projects with storage capacities of 4 – 16 hours

FiT 1st round (min 4h storage) CSP 22ct/kWh FiT PV projects 10.5-14 ct/kWh

Sufficient profit for companies – no focus on lowest generation costs!

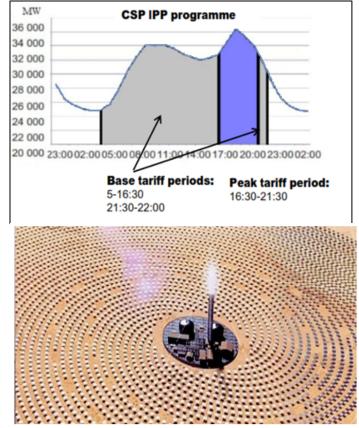
Conclusions

Storage is a unique selling point (USP)

Example RSA: structure of FIT stimulate storage

Hybridisation with PV

- firm and dispatchable supply with good economy
- Chile auction offer 2017: less than 50 USD/MWh


High DNI countries for market introduction

- lower difference market price and generation cost

Larger projects bring costs down

- Projects of 200 MW and more now developed

<u>Clear national policy supports CSP</u>

- Example China: Largest technology development program worldwide (>1 GW 1st round)

Cost reduction better than most projections !